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This paper analyzes the influence of the temperature on the magnetostatic behavior of nanowire arrays. The computation 
was done considering two nanowire arrays types: with honeycomb lattice and with square lattice. The hysteresis loop of the 
nanowires system was calculated using an Ising type model, in which the wires magnetization vector has two preferred 
directions along nanowires axis. The interaction field between wires was analyzed using the FORC (First Order Reversal 
curves) diagrams. It was observed that magnetostatic interaction field modify the shape of hysteresis loop. The hysteresis 
loop parameters and the superparamagnetic effects are directly related with the geometric parameters of the nanowire 
system. 
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1. Introduction 
 
Magnetic nanowires are scientifically interesting and 

have potential applications in many areas of advanced 
nanotechnology, including patterned magnetic media, 
nanosensors magnetic devices and materials for 
microwave applications [1, 3]. Using the electrodeposition 
technique and a porous anodic alumina it can be produced 
easily Fe, Co and Ni wires with diameters ranging from 4  
to 200  nm, and lengths of up to few microns. 

This paper presents a study of the magnetostatic 
interactions on the magnetic properties of Co nanowires 
arrays with different geometries: square lattice and 
hexagonal lattice. In order to calculate the hysteresis loop 
of the system of nanowires it was used an Ising-type 
model, in which each wire has a uniaxial anisotropy field. 
Magnetostatic interactions are calculated in the middle of 
each wire and a standard Metropolis-Monte-Carlo 
numerical procedure was used to evaluate which wire is 
reversing the magnetic moment. It was drawn the 
hysteresis loops for a set of geometrical parameters: 
diameter and length of wires and lattice constant for two 
temperatures K5  and K200 . As it is expected, the 
interactions have an essential role in defining the shape of 
the hysteresis loop of the nanowire system.  

The magnetostatic interactions between wires as 
function of the array lattice constant were analyzed using 
the FORC (First Order Reversal Curve) diagram. For a 
better comparison with the experiment results, two 
particular types of nanowires networks were considered: a. 
the distance between nanowire is the same for hexagonal 
and square lattice and b. the density of nanowire (number 
of wires per unit surface) is the same for hexagonal and 
square lattice. For analyzing of the effect of temperature 
on magnetostatic interactions two cases are considered: 1. 
the anisotropy constant and saturation magnetization 
depend on temperature and 2. no temperature variation of 
the anisotropy constant and saturation magnetization. For 

each considered case the dependence of the magnetic 
hysteresis loop parameters like the coercive force and 
squarness as function of the geometric wires parameters 
like wires diameters and lengths was drawn. 

 
 
2. The numerical model for magnetization  
     process 
 
The considered systems consist of 2D network of 

magnetic nanowires. The Fig. 1 shows a view of these 
systems for two types of networks: with square and with 
hexagonal lattice. 

     

 
Fig.1.The wire system with square and hexagonal lattice. 
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The nanowires, considered as single domain, exhibit a 
magnetic anisotropy with an easy magnetization along the 
axis of the wire. The proposed model is based on the 
assumption of dipole approximation for a wire. This 
supposition is valid in condition when the length of the 
wire is larger then diameter (l>>D) [4]. For short wires 
this approximation is not applicable. Each wire from the 
system is in the field created by the wires ensemble. The 

magnetostatic interaction field iH
r

 created by wires 

assumed as dipoles, with moment m  and length l , in the 
given dipole place ( )i  is computing by summarizing the 
magnetostatic  field of each wire [5]:  
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where a  is the distance between nanowires considered in 
our calculation. The value interaction field depends on the 
wire magnetizations and consequently on the 
magnetization of the system. Inside a mono-domain 
nanowire the field lines are oriented from the north pole to 
the south pole and the fields are opposed to the 
magnetization of the material. Thus, the magnetic field 
inside the material tends to demagnetize the material with 
a field known as the demagnetizing field. Due to 
cylindrical symmetry, in our model it was used the Oz 

component of the demagnetizing field: z z zH N M= -  

where zN  demagnetization factor along the Oz axes, 

computed in the approximation of prolate shape sample 

[6]: 2
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where /c l r= , l  is the length of nanowire and r  is the 
radius of nanowire.  
For simulations, it was taken into account arrays of 
60 60X  nanowires. Each nanowire ( , )i j  of 2D array has 

a normalized magnetic moment ji ,s  which can takes the 

values 1±  as function of moment orientation: up (+1) or 
down (-1). Considering the nanowire arrays as an 
assemble of uniaxial single domain particles having their 
easy axis aligned and the angle between this direction and 
applied field is zero, the heights of the energy barriers 
corresponding to the magnetic moment vector rotation in 
and out of the field direction of the selected wire [7]: 
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where kH  is the uniaxial anisotropy field, K is the 
anisotropy constant of nanowire, V is the wire volume and 
H  is the effective field acting on a wire.   

For uniaxial crystal [ ]31 1( ) (0) ( ) / (0)s sK T K M T M=  

[7]. The temperature dependence of the saturation 

magnetization ( )sM T  was considered as [8]  
 

( ) / (0) 1 /s s cM T M T T» -                    (3) 

The effective field is given by the sum between the applied 

field apH , demagnetizing field dH  and interaction field 

iH : 

ap d iH H H H= + -                            (4)   

It was considered that the interaction field is collinear with 
the applied field direction, but in opposite sense.  
The uniaxial anisotropy field is defined as a Gaussian 
distribution: 

2 2
0( ) exp ( ) / 2k k k kP H H H H sé ù= - -ë û              (5) 

where 0kH  is the most probable anisotropy field of the 

ferromagnetic nanowire and kH s  is the standard deviation 
of the nanowire distribution (Fig. 2). 
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Fig. 2. Gaussian distribution of the anisotropy field 
 
 

Using the Metropolis Monte Carlo method [9] we 
have drawn the hysteresis loops for different temperatures 
(T), diameters of nanowires (d) and distances between 
nanowires (a). In our simulation, the length is range of 50 - 
200 nm and the diameter is range of 10 - 80 nm. The 
simulation started when every dipole are pointing up. The 
applied field is decreased with a given step to negative 
saturation and then is increased with the same step to 
positive saturation. Thus, it was obtained the hysteresis 
loop. 

The magnetic dipole switches from up to down state 
with the probability given by 

 

[ ]exp /( )bp E k T±= -D                          (6) 

 
where E±D are the heights of the energy barriers 
corresponding to the stable equilibrium states 
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(magnetization vector parallel and antiparallel, 

respectively, with respect of the field direction), bk is the 

Boltzmann constant and T is temperature. The numerical 
procedure is applied for all wires from the system. The net 

magnetization M
r

 of the system is the sum of the 
magnetization of constituent wires: 
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( zv is a unit vector along the wire axes and sM is 

saturation magnetization). The simulated hysteresis loop 
for the nanowire systems with square and hexagonal lattice 
at different temperatures are represented in the Fig. 3. The 
considered geometric parameters are: length of nanowire l 
= 200 nm, distance between nanowire a = 2 nm and 
nanowire diameter d = 1.2 nm. It is observed that the 

reduced remanence rM is higher at hexagonal system 

than for square system. 
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Fig. 3. The hysteresis loops for two types arrays: 
hexagonal system and square system for lattice constant  
                                     a = 2 nm. 

As it was expected, the increase of the temperature 
causes a decrease of the coercitive field (Fig. 4). When the 
coercitive field is zero, the nanowire system became 
superparamagnetic. 

The superparamagnetism effect depends on the wires 
diameter. Therefore, for small nanowire diameters, this 
effect takes place at low temperature. At large diameter, 
the temperature is higher when superparamagnetism effect 
appears.  
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Fig.4. The squareness and coercive field function of 

temperature for given parameters in case 2. 
 
 

In the same time the reduced magnetization and 
squarness /r sM M  decreases at the increase of the 
temperature. If there is no difference between hexagonal 
and square systems for the coercive force, the squarness 
depends on type of lattice. Since the magnetostatic 
interaction is stronger at square system than hexagonal, the 
reduced remanence is bigger at hexagonal lattice than 
square lattice. At high temperature this behavior is not 
observed. For large distance between nanowire 5a = nm 
the hysteresis loops are shown in the Fig.5. There are not 
significant differences between hysteresis curves of 
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hexagonal and square lattice systems. This could be 
explains by the low values the interaction field in this case 
compared with the case when the wires are more packed, 
for 2=a nm. 
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Fig.5. The hysteresis loops for two types arrays: a) 
hexagonal system and b) square system for lattice 

constant a = 5 nm. 
 
 

In absence of magnetostatic interactions, the 

squarness of the hysteresis loop is equal to 1 and cH  

increases with diameter of wires for both systems (square 
and hexagonal lattice).  

In figures below, there are represented the coercive 
field dependence of nanowire with wires diameter for two 

cases:  1) ( )K f T= , 1( )sM f T= (Fig.6) and 2) K , sM  

are no dependent with temperature (Fig. 7).  
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Fig.6. The coercive field as function of nanowires 
diameter for hexagonal and square lattice arrays with 
considered  temperature  dependence   of  the  anisotropy  
        constant and saturation magnetization (case 1). 
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Fig.7. The coercive field as function of nanowires 
diameter for hexagonal and square lattice arrays with for 
given values of the anisotropy constant and saturation  
                             magnetization (case 2). 
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In the presence of magnetostatic interactions, the 
coercive force increase with nanowire diameter. The 
magnitude of coercive force is higher at length l = 50 nm 
and smaller at l = 200 nm. Therefore, coercive field 
increases with increasing of length of nanowire.  

 
 
3. FORC diagrams 
 
In order to analyze magnetostatic interaction, we used 

the FORC (First Order Reversal Curve) diagrams. These 
diagrams can be used for the characterization and 
investigation of any magnetic system.  
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Fig.8. FORC diagrams for two nanowire systems at low 

temperature T=5K and a = 2nm, for hexagonal and 
square lattice. 

 
 
The acquisition of a First Order Reversal Curve 

begins by saturating a system in a positive applied field. 
The applied field is decreased to a reversal field rH , and a 
FORC is the magnetization curve that results when the 
field is increased back to saturation. The magnetization at 
applied field H on the FORC with the reversal field rH  is 

denoted by ),( rHHM , where rH H³ [10]. A FORC 
distribution is defined as the mixed second derivative: 
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For the plotting purpose of FORC distribution, it is better 

to change coordinates from { HHr , } to 
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A FORC diagram is a contour or 3D plot of ( , )c sH Hr . 

The cH  and sH  axis are referred to as to the coercivity 

and bias coordinate axis ( iH- ), respectively. The FORC 
diagrams for two lattice constants are shown in Figs. 8-9. 

From FORC diagrams results that the magnetostatic 
interaction is stronger for square system than hexagonal 
system, at low temperature. For high temperature, the 
thermal fluctuations are more powerful than energy barrier 
and the moments can be switched easily from one stable 
direction to another one.  
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Fig.9. FORC diagrams for two nanowire systems at low 
temperature T=5K and the same distance (a = 5 nm) and 
the same  nanowire  density  for  hexagonal  and  square  
                                          Lattice. 
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It was observed that for small distance between 
nanowire the interaction field is very strong and for large 
distances is weaker. 

 
 
4. Conclusion 
 
By calculation of the magnetostatic interactions 

induced in Co nanowire arrays we can obtain the 
information about magnetic behavior of these 
nanostructures. The results presented in this paper show 
the possibility to evaluate the magnetostatic interaction 
effect using FORC diagrams by changing the values of 
dimensional parameters of the arrays (length, radius of 
nanowires and inter-nanowire distance). The interaction 
field is stronger in square arrays than in hexagonal arrays. 
The squarness of the loop is bigger for arrays with low 
interaction field. The superparamgnetism effect depends 
on nanowire diameter. 
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